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a b s t r a c t

In this paper, we investigate power production in complex multireaction systems propelled by either
uncoupled or coupled multicomponent mass transfer. The considered system contains two mass reser-
voirs, one supplying and one taking out the species, and a power-producing reactor undergoing the
chemical transformations characterized by multiple (vector) efficiencies. To establish a suitable basis
for these efficiencies, an approach is applied that implements balances of molar flows and reaction invari-
ants to complex chemical systems with power production. Reaction invariants, i.e., quantities that take
the same values during a reaction, follow by linear transformations of molar flows of the species. Flux
balances for the reacting mixture may be written down by equating these reaction invariants before
and after the reactor. Obtained efficiency formulas are applied for steady-state chemical machines work-
ing at the maximum production of power. Total output of produced power is maximized at constraints
which take into account the (coupled or uncoupled) mass transport and efficiency of power generation.
Special attention is given to non-isothermal power systems, stoichiometric mixtures and internal dissi-
pation within the chemical reactor. Optimization models lead to optimal functions that describe therm-
okinetic limits on power production or consumption and extend reversible chemical work Wrev to
situations in which reduction of chemical efficiencies, caused by finite rates, is essential. The classical
thermostatic theory of reversible work is recovered from the present thermokinetic theory in the case
of quasistatic rates and vanishing dissipation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modeling of chemical and electrochemical power generation
systems by applying thermodynamics of finite rates is a relatively
unknown area. Since, by nature, these systems are strongly nonlin-
ear, some previous work dealing with nonlinear thermal machines
is helpful in defining a suitable methodology [1]. However, chem-
ical models developed to date are only capable of treating systems
of quite simple stoichiometry [2–4]. While by the introduction of
internal irreversibilities these works constitute some progress in
comparison with their older relatives [24,27], their limitation to
the single reaction with a simple stoichiometry still remains a seri-
ous flaw. Real chemical systems contain many species participat-
ing in many reactions, and their stoichiometry is usually
complex, so that the setting of consistent mole balances and recog-
nition of system properties requires advanced mathematical meth-
ods. These methods are applied in various contexts: independence
of reactions [5], reaction invariants [6–10], reference components
[11], reaction control [12–14], stability analysis [15], flow invari-
ants [16,17], and many others. Investigation of dynamical power
systems requires inclusion into considerations: theory of classical
ll rights reserved.
exergy [18], generalized (rate containing) exergies [19,20], aspects
of nonlinear kinetics [4,21–23], and, of course, knowledge of basic
results obtained for heat machines producing or consuming power
[25–29]. For an efficient development of the theory of thermody-
namic limits, knowledge of methods of static and dynamic optimi-
zation is also of importance (e.g., [30–32], and others).

In this paper, we address basic aspects of power production in
multi-component and multireaction systems propelled by fluxes
of transferred reagents. Its analysis of internal imperfections is
based on a new methodology in which chemical loss factors W
are derived from molar flow balances and associated thermody-
namics rather than from purely formal settings of the earlier works
[2–4]. We also identify some reaction invariants as linear transfor-
mations of the species molar fluxes as suitable bases for chemical
efficiencies. The material balances for chemically reacting mixtures
require to equating these reaction invariants before and after the
reaction. Hence, the next new result of the present paper follows
in the form of the claim that the invariants provide the suitable ba-
sis to define both partial and overall efficiencies of power produc-
tion. We derive general power formulas valid for both isothermal
and non-isothermal systems and, in particular, prove their applica-
tions to stoichiometric mixtures reacting with a complete conver-
sion. Corresponding expressions for the entropy production
substantiate reduction of thermal efficiencies caused by increasing
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Nomenclature

A atomic matrix
A, Aclass molar generalized and classical exergy (J mol�1)
Aj classical affinity of reaction (J mol�1)
A extended affinity of reaction (J mol�1)
AC = �DG chemical affinity at Carnot point (J mol�1)
Ak total exchange area at stage k (m2)
av specific area per unit volume (m�1)
B non-square matrix of dimension (R,c)
cp molar heat capacity at the constant pressure (J mol�1

K�1)
cm mass capacity of the active component of fuel (mol2 J�1)
e number of elements in the reaction species
F0 column vector of inlet molar flow rates of components
F0

i inlet molar flow rate of component i

Flr
0 inlet molar flow rate of the limiting reactant

Flr
T total molar flow rate of limiting reactant at the reactor

inlet
FT column vector of total molar flow rates at the reactor in-

let
F0Ref column vector of the R reference inlet molar flow rates
F area of surface perpendicular in the flux direction (m2)
f0, fi process rates (dimensionless)
g1,g total and overall conductance (mol s�1)
G molar flow rate of a selected stream
G Gibbs energy flux driving chemical engine (J s�1)
H Hamiltonian (dimensionless)
hr Hamiltonian density in entropy units (J m�3 K�1)
HTU height of mass transfer unit (m)
I molar flux of inert component (mol s�1)
I identity matrix of dimension (R,R)
k stage number
L molar flow rate of the liquid purge stream
l total number of components in the liquid purge
l transfer area coordinate, variable of spatial extent of the

system (m)
Mi molar ratio of component i with respect to the limiting

reactant
M column vector of the molar feed ratios
m total number of reacting and inert components
Nk cumulative flux of mole number for stages 1,2, . . . ,k

(mol s�1)
n column vector of m molar flows
n molar flux vector of chemical rates (mol s�1)
n10 column vector of the m inlet molar fluxes
nRef column vector of the molar fluxes for the R reference

components
n10Ref column vector of the inlet molar fluxes for R reference

components
ni20 molar flux of component i at the outlet
ni10 molar flux of component i at the inlet
Ni20 transformed outlet flux of component i
Ni10 transform inlet flux of component i
nj molar flux of jth reaction equal to the product of reac-

tion rate and volume
O zero matrix
P,p cumulative power output and power output (J s�1)
Q heat flux including effect of mass transfer (J s�1)
q sensible heat flux (J s�1)
R gas constant (J K�1 mol�1)
R(X, t) optimal work function of cost type in terms of state and

time (J mol�1)
R number of independent reactions
R rank of the atomic matrix
Rmax largest number of independent reactions

r chemical reaction rate (mol m�3 s�1)
S entropy (J K�1)
Sr molar entropy production (J K�1 mol�1)
T temperature of controlled phase (K)
T1,T2 bulk temperatures of reservoirs 1 and 2 (K)
T10 T20 temperatures of fluid circulating in thermal

engine (K)
Te constant equilibrium temperature of environment (K)
T
0

Carnot temperature (K)
_T ¼ u rate of temperature change in non-dimensional

time (K)
t physical time, contact time (s)
u control vector
u variable controlling the fuel consumption
V = max(W) optimal work function of profit type (J mol�1)
V non-square matrix of dimension (m,R) of stoichiometric

coefficients for the m components in the R reactions
VRef square matrix of dimension (R,R) of the stoichiometric

coefficients for the m components in the R reactions
v velocity (m s�1)
W = P/G total specific work or total power per unit molar flux
W molar work at flow, total power per unit mass flux of in-

ert (J mol�1)
X concentration of active component in fuel, moles per

mole of inert (mol mol�1)
_X ¼ dX=ds1 rate change of fuel concentration in time s1

x molar fraction of active component in the fuel (mol
mol�1)

x10 molar fraction of reactant in chemically active part of
the system (mol mol�1)

x20 molar fraction of product in chemically active part of
the system (mol mol�1)

x column vector of m mole fractions
xi mole fraction of component i
y column vector of m mole fractions
yi mole fraction of component i
z adjoint (Pontryagin’s) variable
0 column vector of zeros

Greeks
ar constant for linear combinations
a0 overall heat transfer coefficient (J m�2 s�1 K�1)
b0 overall mass transfer coefficient (mol m�2 s�1)
e column vector of the R molar extents of reaction
ej molar extent of reaction j
e pseudoenergy as the Legendre transform of a

Lagrangian
c cumulative conductance (J s�1 K�1)
f = l01 � l02 efficiency of isomerization as a part of chemical

affinity (J mol�1)
fmp efficiency of chemical engine at maximum power point

(J mol�1)
g = p/q1 first-law thermal efficiency (dimensionless)
h time interval referred to non-dimensional time s1 and

conductance g1 (s, dimensionless)
k Lagrange multiplier (J mol�1)
l chemical potential (J mol�1)
l0 Carnot chemical potential for active component of fuel

(J mol�1)
l1 chemical potential of active component of fuel (J mol�1)
mT

i row vector of stoichiometric coefficients for component
i in each reaction

n process intensity factor (dimensionless)
Pj one-directional part of chemical affinity for jth reaction

(J mol�1)
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rs intensity of entropy production (J K�1 m�3 s�1)
s non-dimensional time, number of transfer units (x/HTU)

(dimensionless)
U factor of internal irreversibility (dimensionless)
v state vector

Subscripts
C Carnot state (open circuit)
i state variable (component)
j reaction number
Ref reference components
T total

v per unit volume
1,2 components 1 and 2

Superscripts
e environment
i initial state
f final state
0 inlet
0 Carnot quantity
�1 inverse of matrix
T transpose matrix

Fig. 1. A scheme of steady, multireaction system.

Fig. 2. A scheme of chemical power yield.
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rates of chemical reactions and mass transports. Our results show
that the classical, reversible theory of power yield is limited to a
close vicinity of the Carnot point; far from this point dissipative ef-
fects prevail and the reversible efficiencies cease to be valid. The
most original features obtained here are: formulas for non-stoichi-
ometric reactions, solutions for power yield driven by coupled heat
and mass transfer and analytic extension to systems with internal
dissipation. As a result, we achieve an extension of the previous re-
sults to multireaction systems with arbitrary stoichiometries which
admits both external and internal losses (occurring off and within
the reaction chamber). This extension shows that the efficiency of
power yield in chemical flow engines is governed by an extended,
space-distributed affinity which constitutes the chemical driving
force for the flow engines and replaces the well-known classical
affinity of lumped chemical systems [33]. The simplest space-dis-
tributed affinity manifests itself in systems with phase changes,
e.g., in drying systems, where this affinity is identical with the dif-
ference of chemical potentials of moisture in solid and gas phases
[34]. The reference [34] also explains how an active part of the dry-
ing-related affinity may be the source of the mechanical power.

A novel, significant contribution of the present paper consists
also in the quantitative evaluation of enhanced power limits in
chemical systems and in the setting of a generalized thermokinetic
theory of chemical power generation, from which the classical
thermodynamic theory of chemical work is recovered in the case
of vanishing rates and negligible entropy production.

To establish suitable basis for chemical analyses, we consider a
multireaction system consisting of m components undergoing R
independent chemical reactions (Fig. 1). Synthetically, this scheme
can refer to many complex combination of unit operations; in our
case, it refers to the chemical subsystem constituting a part of a
larger system depicted in Fig. 2. The inlet state to the chemical sub-
system is m-dimensional column vector of inlet molar flow rate of
species, n10 ; the outlet state of the subsystem is represented by a
vector of outlet flow rates of species, n20 .

The reaction set can be written in the form

m1jB1 þ m2jB2 þ m3jB3 þ � � � þ mmjBm ¼ 0; j ¼ 1;2; . . . ;R; ð1Þ

where Bi are the reacting species and mi,r is the stoichiometric coef-
ficient of component i in reaction j. The convention used is mi,j > 0 if
component i is a product, mi,j < 0 if it is a reactant and mi,j = 0 if com-
ponent i is an inert. Aris and Mah’s [5] and Gadewar et al. [9] have
shown that the number of mole balances for R independent reac-
tions is m � R.

Apparently, one might expect that m molar balances can be
written for a reaction system with m components. Yet, this is not
so, because we should take into consideration the constraints im-
posed by R independent reactions. These constraints can be treated
by using ‘chemical fluxes’ in relating the molar quantities of com-
ponents. As we treat flow systems, we introduce into consider-
ations, chemical flux as the product of the reaction rate and the
volume. For the reaction j its chemical flux can be defined as

nj ¼
ðni20 � ni10 Þj

mi;j
; ð2Þ

where nj is the product of reaction j and the reaction volume,
(ni20 � ni10 )j is the molar flux of component i reacting in reaction j
and mi,j is the stoichiometric coefficient of component i in reaction j.

Since a component can participate in more than one reaction,
we express the overall consumption (production) of reactants
(products) in terms of the ‘chemical fluxes’ as

ni20 ¼ ni10 þ mT
i n; i ¼ 1; . . . ;m; ð3Þ

where ni1 is the initial number of moles of component i at the cross-
section 10, ni20 is the outlet number of moles of component i at the
cross-section 20, mT

i is the row vector of dimension R of the stoichi-
ometric coefficients of component i in each of the R reactions:

mT
i ¼ ðmi;1; . . . ; mi;RÞ ð4Þ

and n is the column vector of the R chemical fluxes for each of the R
reactions:

n ¼ ðn1; . . . ;nRÞ: ð5Þ

Eq. (3) can be written as
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n20 ¼ n10 þ Vn; ð6Þ

where

V ¼
v1;1 . . . v1;R

v i;j �
vm;1 . . . vm;R

2
64

3
75 ð7Þ

is a non-square matrix of dimension (m,R) of the stoichiometric
coefficients for the m components in the R reactions, and
n20 = (n1, . . . ,nm)T

20 is the column vector of dimension m of outlet mo-
lar fluxes of the species and n10 = (n1, . . . ,nm)T

10 is the column vector of
dimension m of the initial molar fluxes.

In steady-state flow systems we can eliminate the R chemical
fluxes from the m equations describing the balances of molar flows,
Eq. (6). This may be accomplished by choosing a subsystem of R
equations from among the m Eq. (6). These are the reference com-
ponents [11]. The reference equations are given as

n20Ref ¼ n10Ref þ VRef n ð8Þ

and the reference stoichiometry matrix is

VRef ¼
v ðm�Rþ1Þ;i . . . v ðm�Rþ1Þ;R

v i;j �
vm;1 . . . vm;R

2
64

3
75 ð9Þ

and nRef = (n(m�R+1), . . . ,nm)T is the R-dimensional column vector of
molar fluxes for reference components, n10Ref = (n10(m�R+1), . . . ,n10m)T

is the column vector of dimension R of the initial molar fluxes for
the reference components. The species may be numbered such that
the reference components are at the end of the column vector of
molar fluxes of species. The reference components should be chosen
such that the square matrix VRef is invertible [11].

Applying the mole balances, Eqs. (8) and (9), the chemical fluxes
can be expressed as

n ¼ ðVRefÞ�1ðn20Ref � n10RefÞ: ð10Þ

Substituting this expression into Eq. (3) yields

Nk20 ¼ nk10 þ mT
kðVRefÞ�1ðn20Ref � n10RefÞ; k ¼ 1; . . . ;m� R: ð11Þ

Following Gadewar et al. [9] one may now define ‘transformed
molar fluxes’ as:

Nk10 ¼ nk10 � mT
kðVRefÞ�1n10Ref ; k ¼ 1; . . . ;m� R; ð12Þ

Nk20 ¼ nk20 � mT
kðVRef Þ�1n20Ref ; k ¼ 1; . . . ;m� R; ð13Þ

where nk10 is the molar flux of component k at the inlet to the reac-
tion chamber, nk20 is the molar flux of component k at the outlet, mT

k

is the row vector (of dimension m) of the stoichiometric coefficients
of component i in all of the R reactions. Here Nk10 are the reaction
invariants based on the inlet molar fluxes and Nk20 are the reaction
invariants based on the outlet molar fluxes of the species. These
new fluxes allow one to write the molar flow balances in Eq. (11)
in the elegant, invariant form

Nk20 ¼ Nk10 ; k ¼ 1; . . . ;m� R: ð14Þ

For a steady flow system with R independent reactions Eq.
(14) states that ‘‘transformed molar fluxes in’’ = ‘‘transformed
molar fluxes out’’, similarly to molar fluxes in non-reactive mix-
tures. For corresponding considerations in the context of non-
flow processes that use the notions of reaction extents and
may be more suitable to unsteady (e.g., batch) reactors see
Gadewar [8] and Gadewar et al. [9–11]. The transformed molar
fluxes numbers also constitute a basis for the suitable definitions
of chemical efficiencies in complex, multireaction systems
(Section 5).
2. Power yield from a general set of chemical reactions

Assume now that the reaction section shown in Fig. 1 is a part of
a more complex system in which moles of reactants are transferred
through various conductances bk as illustrated in Fig. 2. The trans-
fer mechanisms may generally be quite diverse, as discussed in
Section 6. By admitting the system of such a topology we actually
consider a chemical engine driven by flowing reagents for the pur-
pose of power production. In chemical engines irreversible mass
transports participate in transformations of chemical driving forces
into mechanical power.

In the kinetic regime the thermodynamic driving force for reac-
tion j is given by its standard affinity [33]

Aj ¼ Pf
j �Pb

j ¼ �
Xm

i¼1

ðv ijliÞ ¼ �vTl ¼
Xm

i¼1

mijðl0
i þ RT ln aiÞ

� �

¼ RT ln kf
j

Ym
i¼1

a
v f

ij

i

 ! ,
kb

j

Ym
i¼1

a
vb

ij

i

 !!
¼ R ln rf

j =rb
j

� �
: ð15Þ

The last two lines result from the identity

Xm

i¼1

ðmijl0
i Þ ¼ RT lnðkf

j =kb
j Þ ð16Þ

which follows since both the rate rj and the affinity Aj of each reac-
tion must vanish identically at thermodynamic equilibrium.

Assume that the reservoir with ‘‘higher” reaction potentialQ
1j contains substrates (all system’s components before the

chemical transformation). Reservoir with ‘‘lower” reaction poten-
tial

Q
2j contains products (all system components after the

transformation). The reactions in the chemical chamber undergo
in the purely kinetic regime, so that the classical definition of
chemical affinity (15) is locally valid. The general power expres-
sion and efficiency formula for the considered system follow
from the entropy conservation and energy balance in the revers-
ible part of the system. The entropy flux continuity through the
chemical chamber or the active part of the system can be stated
in the form
q10

T10
þ s110

n110
þ s210

n210
þ . . . si10 ni10 . . .þ sm10

nm10

¼ q20

T20
þ s120

n120
þ s220

n220
þ . . . si20 ni20 . . .þ sm20

nm20
; ð17Þ

where q and ni are fluxes of heat and substances in vertical cross-
sections 10 and 20 (Figs. 1 and 2). Chemically inactive substances (in-
erts) can also be included in this scheme.

Multiplying Eq. (17) by the common temperature T = T10 = T20

and using the identity h = Ts + l we obtain

q10 þ ðh110
� l110

Þn110
þ � � � þ . . . ðhi10 � li10

Þni10 . . .þ ðhm10
� lm10

Þnm10

¼ q20 þ ðh120
� l120

Þn120
. . .þ . . . ðhi20 � li20

Þni20 . . .

þ ðhm20
� lm20

Þnm20
: ð18Þ

Combining Eq. (18) with the energy balance described by an
equation

q10 þ h110
n110
þ h210

n210
þ . . . hi10 ni10 . . .þ hm10

nm10

¼ q20 þ h120
n120
þ . . . hi20 ni20 . . .þ hm20

nm20
þ p ð19Þ

and defining ‘‘total heat flux” Q as the sum of the sensible heat and
the mass transfer including heat flux
Q1 � q1 þ T1s11 n11 þ . . . T1si1 ni1 . . .þ T1sm1 nm1 ð20Þ
we find in terms of total heats Q10 and Q20

p ¼ Q 10 þ l110
n110
þ . . . li10

ni10 . . .þ lm10
nm10
� Q 20 � l120

n120

� . . . li20
ni20 . . .� lm20

nm20
: ð21Þ
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This general result and the isothermal case of entropy balance
(17) lead to the following expression for the isothermal power
yield in the reversible part of the reactor

p ¼ l110
n110
þ l210

n210
þ . . . li10

ni10 . . .þ lm10
nm10
� l120

n120

� l220
n220

. . .� li20
ni20 . . .� lm20

nm20
ð22Þ

Thus, in a steady and isothermal flow process, the power yield
of an endoreversible engine system is the difference between the
input and output flux of the Gibb’s function.
3. Power yield from chemical reactions with complete
conversion

We shall yet transform Eq. (22) to a more pronouncing form
specific to the case of the complete conversion. For convenience
the components are numbered such that species = 1,2, . . . , i are sub-
strates and species = i + 1, i + 2, . . . ,m are products. We shall also
take the advantage of the mass conservation in each chemical
reaction

ðn110
� n120

Þj
m1j

¼
ðn210

� n220
Þj

m2j
. . . ¼

ðni10 � ni20 Þj
mij

. . . ¼
ðnk10

� nk20
Þj

mkj

¼
ðnl10
� nl20

Þj
mlj

¼
ðnm10

� nm20
Þj

mmj
� �nj: ð23Þ

This is an alternative form of Eq. (2). The above formula uses
(common for each reaction) molar fluxes of active reagents, nj,
identical in the present case with the products of the reaction vol-
ume V and derivatives of reaction extents, ej, with respect to time t,
(i.e., reaction rates, rj).

In the case of complete conversion, for each j

ðn120
¼ n220

. . . ¼ ni20 Þj ¼ 0 ð24Þ

(species = 1,2, . . . , i are substrates) and

ðniþ110
¼ niþ210

. . . ¼ nm10
Þj ¼ 0 ð25Þ

(species = i + 1, i + 2, . . . ,m are products). Thus, in this case Eq. (23)
takes the form

�
ðn110
Þj

m1j
¼ �
ðn210
Þj

m2j
. . . ¼ �

ðni10 Þj
mij
¼
ðniþ120

Þj
miþ1j

¼
ðnl20
Þj

mlj
¼
ðnm20

Þj
mmj

� nj

ð26Þ

(j = 1,2, . . . ,R). Since for each i and j,

ni ¼
XR

j¼1

ðniÞj ð27Þ

and Eqs. (24)–(26) are valid, total power yield of an isothermal mul-
tireaction process (22) takes the form

p ¼
XR

j¼1

l110
ðn110
Þj þ l210

ðn210
Þj þ . . .li10

ðni10 Þj � liþ120
ðniþ120

Þj . . .
n

�ll20
ðnl20 Þj . . .� lm20

ðnm20
Þj
o

ð28Þ

and, finally (keep in mind that each nj > 0 and mij of substrates are
negative)

p ¼
XR

j¼1

fpjg ¼
XR

j¼1

�fl110
m1j þ l210

m2j þ . . .li10
mij þ liþ120

miþ1j�

þ �lm�120
mm�1j . . .þ lm20

mmjÞgnj ð29Þ

nj is the chemical flux of jth reaction equal to the product of reaction
rate and volume, nj = rjV. Since nj = rjV, Eqs. (15) and (29) state that
in the case of the complete chemical conversion of substrates into
products, the power yield from unit volume of the reactor equals
to the sum of products of the affinity-like driving forces and the
rates of the reactions.

P ¼
XR

j¼1

f~Ajnjg ¼ V
XR

j¼1

f~Ajrjg: ð30Þ

Note, however, that the affinity-like quantity ~Aj which appears
in Eqs. (29) and (30) is not precisely identical with the classical
affinity Aj of Eq. (15). The former is an extended quantity involving
states in cross-section’s 10 and 20, whereas the latter is the state
function. Nonetheless, one can use the ‘‘extended affinity” ~Aj in cal-
culations of reaction efficiencies and power production as shown in
the further text of the present paper.

For a single reaction the chemical efficiency f is defined here as
power yield per one mole of the invariant molar flux of active re-
agents; for many reactions vector of such efficiencies is defined.
Such efficiency is identical with an extended affinity of the reaction
in the chemically active part of the system. While it is not dimen-
sionless, it can describe correctly the system. We shall use the
affinity-based efficiency in this paper because of the suitability
and popularity of affinity notion. Later, other definitions of efficien-
cies will be proposed.

When conversion is not complete, Eq. (22) still remains valid,
yet the use of products of the reaction volume and reaction rates,
nj, is less suitable. A special case of Eq. (29), applied to the single
isomerization reaction was considered by de Vos [23] and Sien-
iutycz [2,3]. In the classical thermodynamics of systems without
power production Eq. (30) describes the product of system’s tem-
perature and its entropy production. Here, however, in agreement
with Eq. (17), which assures the internal entropy conservation,
power is produced from within of an ideal chemical system with-
out any internal entropy source. This is an ‘‘internally ideal” or
‘‘endoreversible” case that admits the thermodynamic imperfec-
tions only in external parts of the chemical engine, i.e., in regions
where the mass diffusion and heat transport are essential. For an
isomerisation equation, a simple approach treating internal imper-
fections associated with entropy and mass sources has recently
been presented by Sieniutycz [2]. We shall extend this approach
to complex reactions in Section 11.
4. Entropy production in a system with many components and
chemical reactions

Entropy production of the overall system composed of the res-
ervoirs and the reactor can be expressed in terms of the reservoir
parameters and system’s fluxes

rs ¼
q2

T2
� q1

T1
þ s12 n12 þ . . . si2 ni2 . . .þ sm2 nm2 � s11 n11 � s21 n21

� . . . si1 ni1 . . .� sm1 nm1 : ð31Þ

To eliminate flux q2 we apply in this equation an energy balance
law (similar to Eq. (19) but written for cross-sections 1 and 2 in
Fig. 2)

q1 þ h11 n11 þ h21 n21 þ . . . hi1 ni1 . . .þ hm1 nm1

¼ q2 þ h12 n12 þ . . . hi2 ni2 . . .þ hm2 nm2 þ p: ð32Þ

We obtain

rs ¼ T�1
2 ðq1 þ h11 n11 . . .þ hi1 ni1 . . .þ hm1 nm1 � h12 n12

� . . . hi2 ni2 . . .� hm2 nm2 � pÞ � T�1
1 q1 þ s12 n12

þ . . . si2 ni2 . . .þ sm2 nm2 � s11 n11 � s21 n21 � . . . si1 ni1 . . .

� sm1 nm1 : ð33Þ
The above general formula may also be written as
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rs ¼ q1ðT
�1
2 � T�1

1 Þ þ T�1
2 ðl11

n11 . . .þ li1
ni1 . . .þ lm1

nm1

� l12
n12 . . .� li2

ni2 . . .� lm2
nm2 � pÞ þ ðT�1

2 � T�1
1 Þ

� ðT1s11 n11 þ . . . T1si1 ni1 . . .þ T1sm1 nm1 Þ: ð34Þ

This result reduces to an earlier formula obtained for a special
case of an isomerisation reaction [2,3]

rs ¼ q1
1
T2
� 1

T1

� �
þ ðl1 � l2Þn

T2
� p

T2
þ 1

T2
� 1

T1

� �
T1s1n: ð35Þ

The following form of general formula (34)

rs ¼ ðq1 þ T1s11 n11 . . .þ T1sm1 nm1 ÞðT
�1
2 � T�1

1 Þ

þ T�1
2 ðl11

n11 . . .þ li1
ni1 . . .þ lm1

nm1 � l12
n12 . . .

� li2
ni2 . . .� lm2

nm2 � pÞ ð36Þ

implies a convenient redefinition of the heat flux q. Defining ‘‘total
heat flux” Q as the sum of the sensible heat and the mass transfer
related heat flux

Q 1 � q1 þ T1s11 n11 þ . . . T1si1 ni1 . . .þ T1sm1 nm1 ð20Þ

we obtain

rs ¼ Q 1ðT�1
2 � T�1

1 Þ þ T�1
2 ðl11

n11 . . .þ li1
ni1 . . .þ lm1

nm1

� l12
n12 . . .� li2

ni2 . . .� lm2
nm2 � pÞ ð37Þ

and for the isomerisation reaction

rs ¼ Q 1
1
T2
� 1

T1

� �
þ ðl1 � l2Þn� p

T2
: ð38Þ

Elimination of power p from Eq. (37) and transformed form of the
energy balance (19) written in terms of Q rather than q, i.e. Eq. (21),

p ¼ Q 10 þ l110
n110
þ . . .li10

ni10 . . .þ lm10
nm10
� Q 20 � l120

n120

� . . .li20
ni20 . . .� lm20

nm20
ð21Þ

yields the endoreversible entropy balance

T�1
2 rs ¼ fQ 1ð1� T2=T1Þ � Q10 ð1� T20=T10 Þg þ ðl11

n11 . . .

þ li1
ni1 . . .þ lm1

nm1 � l12
n12 . . .� li2

ni2 . . .

� lm2
nm2 Þ � ðl110

n110
. . .þ li10

ni10 . . .þ lm10
nm10

� l120
n120
� . . . li20

ni20 . . .� lm20
nm20
Þ; ð39Þ

whereas for the isomerisation reaction

rs ¼
Q 1

T2
1� T2

T1

� �
� Q 10

T2
1� T20

T10

� �

þ ðl1 � l2Þn� ðl10 � l20 Þn
T2

: ð40Þ

Thus, we arrive at the final result

T�1
2 rs ¼ fQ 1ð1� T2=T1Þ � Q10 ð1� T20=T10 Þg þ ðl11

n11 . . .

þ li1
ni1 � liþ12

niþ12 . . .� lm2
nm2 Þ � ðl110

n110
. . .

þ li10
ni10 � liþ120

niþ120
. . .� lm20

nm20
Þ: ð41Þ

This is a general form of endoreversible entropy balance in mul-
ticomponent and multireaction systems applicable to arbitrary
stoichiometry.

Our purpose now is to determine how this general endorevers-
ible formula simplifies in the case of systems with complete conver-
sion. In this case, we apply the mole balance Eq. (23) for both cross-
sections, 1 and 2 (primed and not), i.e., for each j

ðn120
¼ n220

. . . ¼ ni20 Þj ¼ 0 ð24Þ
ðn12 ¼ n22 . . . ¼ ni2 Þj ¼ 0 ð42Þ

(species = 1,2, . . . , i are substrates) and

ðniþ110
¼ niþ210

. . . ¼ nm10
Þj ¼ 0 ð25Þ

ðniþ11 ¼ niþ21 . . . ¼ nm1 Þj ¼ 0 ð43Þ

(species = i + 1, i + 2, . . . ,m are products).
With the mole balance, Eq. (23), we obtain equations of the type

of Eq. (26)

�
ðn110
Þj

m1j
¼ �
ðn210
Þj

m2j
. . . ¼ �

ðni10 Þj
mij
¼
ðniþ120

Þj
miþ1j

¼
ðnl20
Þj

mlj
¼
ðnm20

Þj
mmj

� nj

ð26Þ

for both cross-sections, 1 and 2, primed and not. We also use Eq.
(27) for each i and j,

ni ¼
XR

j¼1

ðniÞj ð27Þ

The procedure is now similar to that leading to the power
yield, Eqs. (28) and (29), namely, we apply the above mole flux
constraints in the endoreversible entropy balance (41). The result
is the entropy production of the process with a complete
conversion

T�1
2 rs¼fQ 1ð1�T2=T1Þ�Q10 ð1�T20=T10 Þg

þ
XR

j¼1

l11
ðn11 Þj . . .þli1

ðni1 Þj�liþ12
ðniþ12 Þ�lm2

ðnm2 Þj
h in

� ðl110
ðn110
Þj . . .þli10

ðni10 Þj�liþ120
ðniþ120

Þj . . .�lm20
ðnm20

Þj
h io

:

ð44Þ

In this equation, we have taken into account mole balances
(26) at all cross-sections of interest (primed and not). We
obtain

T�1
2 rs ¼ fQ1ð1� T2=T1Þ � Q 10 ð1� T20=T10 Þg

þ
XR

j¼1

� ðl11
m1j . . .þ li1

mij þ liþ12
miþ1j . . .þ lm2

mmjÞ
hn

�ðl110
m1j . . .þ li10

mij þ liþ120
miþ1;j . . .þ lm20

mmjÞnj

io
:

ð45Þ

Consequently, in terms of efficiencies

fj � �fl1m1j þ l2m2j þ . . . limij þ liþ1miþ1;j þ . . .lm�1mm�1;j

þ lmmmjg ð46Þ

and taking into account properties of the Carnot point (referred to
the bulk states 1 and 2) we arrive at the final result

T�1
2 rs ¼ fðQ 1gÞC � Q10gþ

XR

j¼1

ðfjC � fjÞnj�
� 	

: ð47Þ

We observe that, under the approximation Q1 = Q10, the ther-
mal component is the product of generalized (i.e., mass transfer
including) heat flux (20) and the deviation of thermal efficiency
g from the Carnot efficiency. Yet, the exact result for the thermal
component involves the difference of the product of Q1g in the
Carnot state and the actual state of the system. The mass diffu-
sion component is the scalar product of all chemical fluxes nj

and deviations of actual chemical efficiencies from their values
at the reversible (Carnot) point. The vector form of this formula
is Eq. (49) below.

In the special case of isomerisation reaction A1 + A2 = 0 the
above equation may be written in the form
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rs ¼ Q 1
1
T2
� 1

T1

� �
� Q10

1
T2
� 1

T 0

� �
þ T�1

2 ½ðl1 � l2Þ � ðl10 � l20 Þ�n;

ð48Þ

where T 0 = T2T10/T20 is the so-called Carnot temperature [31].
For an isothermal process with R reactions (in which T10 = T20 =

T1 = T2 = T) and complete conversion the following vector equation
follows from general Eq. (47)

rs ¼ T�1ðfC � fÞ:n; ð49Þ

where n is the chemical vector in R-dimensional reaction space.
This result means that, modulo to the multiplier T�1, the entropy
production is the scalar product of the vector of chemical flux n
and the deviation of chemical efficiency f from its reversible limit,
fC. The subscript C points out that the reversible efficiency refers
to the Carnot point of the chemical system, also called ‘‘open circuit
point” [23]. In the engine range this point is associated with vanish-
ing reaction vector n and upper, reversible limit for f.

5. Significance of invariant molar flux

When both reservoirs are infinite a steady state can be achieved
in the system; we shall analyze this steady state. First we assume
that R = 1, i.e., a single reaction that undergoes in the system. Then,
as follows from Eq. (23) in the case of complete conversion Eqs.
(24)–(26) are valid for a single reaction. Then

�
n110

m1
. . . ¼ �

ni10

mi
. . . ¼

niþ120

miþ1
¼

nm20

mm
� n; ð260Þ

and the isothermal power production is

p ¼ �fl110
m1 þ l210

m2 þ . . .li10
mi þ liþ120

miþ1

þ . . .lm�120
mm�120

þ lm20
mm20
gn ð50Þ

so that

p ¼ ~An ¼ V ~Ar : ð51Þ

Even in this simple case the efficiency of power yield coincides
with the extended affinity

f ¼ p=n ¼ p=ðVrÞ ¼ ~A: ð52Þ

To show the role of flux n and give a physical interpretation for
it we begin with a special case of the isomerization reaction
A1 + A2 = 0, for which the stoichiometric coefficients m1 = �1 and
m2 = 1, and Eq. (260) takes the form

n ¼ �n110
=m1 ¼ n220

=m2 ð53Þ

or, n ¼ n110
¼ n220

. We note that at the reactor inlet the role of flux n is
taken over by the flux of component 1 whereas at the outlet – by the
flux of component 2. It is therefore reasonable to keep in mind that
the efficiency basis involves flux n as an invariant property of both
components, 1 and 2. Indeed, from Eq. (23) or by considering the
trivial stoichiometry of the isomerization reaction (where m1 = �1
and m2 = 1), we obtain for an arbitrary cross-section y0 of the reactor

n120
� n110

¼ m1n � �n ð54Þ
n220
� n210

¼ m2n � n: ð55Þ

Thus, after adding both these equations,

n120
þ n220

¼ n110
þ n210

ð56Þ

or, in a slightly different notation

ðn1 þ n2Þ20 ¼ ðn1 þ n2Þ10 : ð560Þ

Clearly, in this simple case, total flux of moles n = n1 + n2 is
the same both cross-sections of the reactor, i.e., n is the reaction
invariant. For the mixture with no product 2 at the reactor inlet
ðn210
¼ 0Þ, that leaves the reactor with the complete conversion

(n120
¼ 0), one has n ¼ n110

¼ n220
. The last equality has been used

in the form n = n10 = n20 in a previous work dealing with the
power production from an isomerization reaction, A1 + A2 = 0,
[1].

Clearly, in the considered case the flux n measures an invariant
molar flux; this flux appears in the power formula

p ¼ fn ¼ ðl10 � l20 Þn: ð57Þ

This formula is valid for a single-reaction, two-component-sys-
tem. While formulae of this sort are known, de Vos [23] and Sien-
iutycz [2,3], the invariancy of the flux n they involve was not
pointed out in the literature. Let us therefore keep in mind that
efficiency f is defined as power yield per one mole of the invariant
molar flux of both active reagents (1 and 2), that is

f ¼ p=n ¼ l10 � l20 ð58Þ

i.e., not per one mole of a chosen reagent as one could, perhaps, ex-
pect. Remember also that in this theoretical scheme the efficiency is
identical with the extended affinity of the reaction ~Aj in the chem-
ically active part of the system.

It is now clear that, in general multireaction flow systems, the
transformed molar fluxes Nk, defined by formulae (12) and (13)
for k = 1,2, . . . ,m � R, can constitute suitable bases for the defini-
tion of partial chemical efficiencies and a resulting overall effi-
ciency. Thanks to the invariance property (14), the basis for each
efficiency is the same for each cross-section of the flow reactor.
Thus the contribution of each transformed flux to the total power
(determined from some measurements or calculations) can be
quantified for an arbitrary cross-section of the reactor. In the iso-
thermal case, i.e., when thermal component of power can be ig-
nored, the resulting power production can be obtained form the
expression

p ¼
Xm�R

k¼1

fkNk ð59Þ

which is a generalization of the formula (57). When m = 2 (isomeri-
sation or phase change of a component) Eq. (57) follows from Eq.
(59).

6. Role of mass exchange equations

The mass transfer between each reservoir and the production
section of the system is described by certain kinetic equations.
For simplicity, we assume that these equations are linear with re-
spect to molar fractions. The mass balances for the substances
transferred, produced and consumed are contained in the equa-
tions below. For the substrates (species = 1,2 ,. . . , i in cross-section
10) we can write in terms of molar concentrations xk (correspond-
ing with appropriate chemical potentials lk in Fig. 1)

n110
¼ g11

ðx11 � x110
Þ ð60Þ

n210
¼ g21

ðx21 � x210
Þ ð61Þ

..

.

ni10 ¼ gi1 ðxi1 � xi10 Þ ð62Þ

whereas for the products (species = i + 1, i + 2, . . . ,m in cross-
section 20)

niþ120
¼ giþ12

ðxiþ120
� xiþ12 Þ ð63Þ

niþ220
¼ giþ22

ðxiþ220
� xiþ22 Þ ð64Þ

..

.

nm20
¼ gm2

ðxm20
� xm2 Þ: ð65Þ



Fig. 3. Nonlinear macrokinetics of heat and mass transfer based on concomitant
fluxes If and Ib such that the resulting flux J = If � Ib.
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Fig. 4. Invariant flux of active components in terms of efficiency f.
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When the mass transfer description is in terms of chemical
potentials lk rather than mole fractions xk, the use of conductances
of the substrates g11

; g21
; . . . gi1

and those of the products
giþ12

; giþ22
; . . . gm2

should be replaced by the use of their suitable
counterparts,

b11
; b21

; . . . bi1 ;biþ12
;biþ22

; . . . bm2
;

as shown in Fig. 2. In the case of nonlinear transfer processes
the use of chemical potentials as the quantities which govern the
complex transfer of mass may be more appropriate. Yet, these
chemical potentials will necessarily have to satisfy some nonlinear
equations which are exponential with respect to lk These equations
incorporate the concept that, for each pair of states involved (i.e., 1
and 10 or 20 and 2), the resulting (observed) mass flux Jk is the dif-
ference of two unidirectional, ‘‘absolute” fluxes, Fig. 3, (Sieniutycz
[21–23] and Lin et al. [4]).

The property of concomitant fluxes holds for all ‘circulation
branches’ shown in Fig. 2. An example of an equation stemming
from the theory of two concomitant fluxes is given below

ni10 ¼ Ieq
i exp

X
k

m�ki lk1
� leq

k

� � !
� exp

X
k

m�ki lk10
� leq

k

� � !( )
;

ð66Þ

where

Ieq
i � I0

i

X
k

expðm�kil
eq
k Þ ð67Þ

is the common value of both absolute currents at equilibrium asso-
ciated with ‘‘exchange current” I0

i . Eq. (66) is of Marcelin-de Donder
type, given here purposely in the form containing explicitly the
equilibrium state. For small deviations of chemical potentials lk

from the equilibrium the Taylor expansion yields the Onsagerian
structure

ni10 ¼ Ieq
i

X
i

m�kiðlk1
� leq

k Þ �
X

k

m�kiðlk10
� leq

k Þ
( )

¼ Ieq
i

X
k

m�kiðlk1
� lk10

Þ
( )

�
X

k

Leq
ki ðlk1

� lk10
Þ; ð68Þ

where Leq
ki � Ieq

k m�ik is the Onsager’s matrix at the thermal equilib-
rium. An analogous formula holds for cross-sections 20 and 2. A gen-
eral equality Ieq

k m�ik ¼ Ieq
i m�ki, is valid that preserves the Onsager’s

symmetry close to the equilibrium. For more details, the interested
reader is referred to the previous work (Sieniutycz [21–23], Lin et al.
[4]).

However, in the section below we restrict ourselves to the Eqs.
(60)–(65) linear with respect to the molar concentrations xk.
7. Characteristics of the chemical engine

In order to determine characteristics of the chemical engine
at the steady state (unlimited stock of fuel) one searches for un-
known ‘‘primed” concentrations xi10 and xk20

expressed in terms
of a control variable. For the chemical engine the suitable con-
trol can be chemical flux n. The knowledge of the functions
describing primed concentrations in terms of flux n will lead
to important characteristics which link efficiency f with chemi-
cal flux n.

Using the usual structure of chemical potentials

liðxi; TÞ ¼ li0ðTÞ þ RT ln xi ð69Þ

and the reference chemical potentials to define the normalized
affinity

f0 � �fl10m1 þ l20m2 þ . . .li0mi þ liþ1;0miþ1 þ . . .lm�1;0mm�1

þ lm0mmg ð70Þ

we obtain an efficiency expression in the form

f ¼ f0 � RT ln xm1
110

xm2
210

. . . xmi
i10

xmiþ1
iþ120

. . . xmm
m20

� �
: ð71Þ

Solving the exchange Eqs. (60)–(62) for ‘‘primed” concentra-
tions x110

; x210
; . . . ; xi10 and Eqs. (63)–(65) for analogous concentra-

tions xiþ120
; . . . ; xm20

and applying in these formulas the mole
balance formula, Eq. (260), we obtain for cross-section 10

x110
¼ x11 � n110

=g11
¼ x11 þ m1n=g11

ð72Þ
x210
¼ x21 � n210

=g21
¼ x21 þ m2n=g21

ð73Þ

..

.

xi10 ¼ xi1 � ni10 =gi1 ¼ xi1 þ min=gi1 ð74Þ

and, for cross-section 20

xiþ120
¼ xiþ12 þ niþ120

=giþ12
¼ xiþ12 þ miþ1n=giþ12

ð75Þ

..

.

xm20
¼ xm2 þ nm20

=gm2
¼ xm2 þ mmn=gm2

: ð76Þ

Substituting these results into Eq. (71) we find an equation link-
ing the reagent’s flux n with the chemical efficiency f

exp
f� f0

RT
¼ �ðx11 þ m1n=g11

Þm1 ðx21 þ m2n=g21
Þm2

. . . ðxm2 þ mmn=gm2
Þmm : ð77Þ

Thus, an explicit form exists from which f can be calculated as a
logarithmic function of n. The qualitative picture of the relation-
ship between n and f is illustrated in Fig. 4.

As an example of application of the above general equation con-
sider the isomerization reaction A1 + A2 = 0 for which the stoichi-



Fig. 5. Entropy production and power versus chemical efficiency f in one-dimensional system. Classical theory of power yield is limited to a close vicinity of the Carnot point.
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ometric coefficients m1 = �1 and m2 = 1. The general formula (77)
then leads to the following equation describing f in terms of n

f ¼ f0 � RT lnfðx11 � n=g11
Þ�1ðx22 þ n=g22

Þg

¼ f0 þ RT ln
x11 � n=g11

x22 � n=g22

 !
: ð78Þ

This special result was obtained in our earlier work [2,3].
Eq. (77) can be considered as the generalization of Eq. (78)
for an arbitrary chemical reaction with the complete
conversion.

For the function f(n) defined by Eq. (77) the one-dimensional
case of multireaction entropy production (49) and power yield
(29) is illustrated graphically in Fig. 5.

Eqs. (77) and (78) prove that the effective concentrations of the
reactants in the upper reservoir, xieff = xi � gi

�1n, are decreased,
whereas the effective concentrations of the products in the lower
reservoir, xkeff = xk + gk

�1n, are increased due to the finite chemical
flux, n. This causes that efficiency f decreases nonlinearly with n.
When the effect of resistances g�1

i and g�1
k is ignorable or flux n

is very small, reversible efficiency, fC, is attained.
Since the system’s power function is described by the product

fðnÞ n, this power is equal to zero in the points where n = 0 and
f = 0. The first is associated with the so-called Carnot point, the sec-
ond with the vanishing driving force of the reaction within the
chemical reactor. Consistently with the mathematical theorem of
Rolle, power function p(n) = fðnÞ n exhibits a maximum for a finite
value of fuel flux, n.

Variables n and f are examples of two controls with respect to
which maximum power may be sought. For instant, as shown in
Fig. 5, power function exhibits a maximum for some efficiency, a
chemical analogue of the well known Chambadal–Novikov–Cur-
zon–Ahlborn efficiency (CNCA efficiency: [27–29]).
8. Generalization for multiple reactions

It is easy to generalize the above treatment for the situation
when R independent reactions occur in the system. Using the
chemical potentials in actual and reference states we define R par-
tial efficiencies (for each reaction)

fj � �fl1m1j þ l2m2j þ . . . limij þ liþ1miþ1;j þ . . .lm�1mm�1;j þ lmmmjg
ð46Þ

and R normalized affinities (70)

f0j � �fl10m1j þ l20m2j þ . . .li0mij þ liþ1;0miþ1;j

þ . . .lm�1;0mm�1;j þ lm0mmjg: ð79Þ

We thus obtain R efficiency expressions

fj ¼ f0j � RT ln x
m1j
110

x
m2j
210
� xmij

i10
x
miþ1;j
iþ120
� xmmj

m20

� �
: ð80Þ

(j = 1,2, . . . ,R). Using exchange Eqs. (72)–(76) for ‘‘primed” concen-
trations and applying mole balances of the multireaction system,
Eqs. (26) and (27), we obtain generalized expressions linking the
boundary concentrations of the reactor with chemical fluxes nj.
For the cross-section 10

x110
¼ x11 þ

XR

j¼1

m1jnj=g11
ð81Þ

x210
¼ x21 þ

XR

j¼1

m2jnj=g21
ð82Þ

..

.

xi10 ¼ xi1 þ
XR

j¼1

mijnj=gi1 ð83Þ
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and, for cross-section 20

xiþ120
¼ xiþ12 þ

XR

j¼1

miþ1jnj=giþ12
ð84Þ

..

.

xm20
¼ xm2 þ

XR

j¼1

mmjnj=gm2
: ð85Þ

Substituting these results into Eq. (80) we find a set of R equa-
tions each having the structure of the single-reaction equation
(77). This set may be given a vector–matrix form explicit with re-
spect to all efficiencies. In such a form the multireaction result con-
stitutes a single vector equation

f ¼ f0 � RT ln
Yi

s¼1

ðxs1 þ ðmnÞs=gk1
Þms �

Ym
p¼iþ1

ðxp2
þ ðmnÞp=gp2Þ

mp

( )
;

ð86Þ

where ms and mp are vectors composed of stoichiometric coefficients
of species s and p in all R independent chemical reactions. Vector Eq.
(86) links R chemical fluxes nj (flux vector n) with R chemical effi-
ciencies fj (efficiency vector f). In fact, this vector equation de-
scribes the relation between R-dimensional efficiency vector, f
and R-dimensional vector of chemical fluxes, n. Qualitatively, each
of R relations is of the type presented in Fig. 4.

9. Propelling the engine by coupled mass transfer

Exchange Eqs. (60)–(65) can be generalized (for both reactants s
and products p) to treat the coupled transfer phenomena. This is
associated with the use of non-diagonal conductance matrices for
substrates and products contained in common matrix g. In general
the matrix g is a square matrix that involves the mass transfer con-
ductances of all species (reactants and products).

Allowing non-diagonal entries in g we abandon the uncoupled
description (neglect of crossing effects) that was used up to now.
A coupled-process generalization uses the matrix–vector notation
and leads to the diffusion–reaction equations (81) and (82) in the
form

x10 ¼ x1 þ g�1
1 m1n; ð87Þ

x20 ¼ x2 þ g�1
2 m2n: ð88Þ

In these equations the distinction between reactants and prod-
ucts is assured respectively by lower indices 1 and 2. Thus vector
x1 refers to reactants and vector x2 to products, both sets being dis-
joint. Disjoint are also sets of coordinates of resistance matrices g�1

1

and g�1
2 .Yet, both considered equations are coupled due to the

presence of (R dimensional) chemical flux vector n whose compo-
nents are equal to the product of reaction rates and reactor volume.
A vector equation describing the coupled-transfer characteristics
that link the vectors of efficiencies and chemical fluxes is the cou-
pled-transfer generalization of Eq. (86)

f ¼ f0 � RT

� ln
Yi

s¼1

ðxs1 þ ðg�1
1 m1nÞsÞ

ms �
Ym

p¼iþ1

ðxp2
þ ðg�1

2 m2nÞpÞmp

( )
: ð89Þ

The compact notation used here uses a vector of logarithm
functions that emerge because ms and mp are vectors composed of
stoichiometric coefficients of species s and p in all R independent
chemical reactions.

Since the R-dimensional vectors n and f are related, at least in
theory, power produced in the reactor might be determined as a
function of f or in terms of n. Yet, the only explicit function is the
one from which f can be expressed as a logarithmic function of n
(the inverse function describing n in terms of f is implicit). Here is
a unique working formula for power production in terms of n

P ¼ f � n ¼ f0 � n

� RTn ln
Yi

s¼1

ðxs1 þ ðg�1
1 m1nÞsÞ

ms �
Ym

p¼iþ1

ðxp2
þ ðg�1

2 m2nÞpÞmp

( )
: ð90Þ

The power function is now spanned in the R-dimensional
space of reaction fluxes n. Again, similarly as in a single reaction,
this power is equal to zero in points where n = 0 and f = 0. The
first is associated with the so-called Carnot point, the second
with ‘‘short circuit point”, the point of vanishing driving force
of the reaction within the chemical reactor. Consequently, the
power function p(n) = f � n exhibits a maximum for a finite value
of flux vector, n.

The maximum power point is the result of maximizing of
power expression (90) with respect to chemical vector n as a
free control. Analytical methods are seldom effective. Sometimes
one uses diagrams of function p(n) to determine the maximum
point graphically. In general, the information regarding the max-
imum point can be obtained by applying the methods of numer-
ical search. A large number of numerical procedures, known
from the static optimization, is available (e.g., [30–32]). An iter-
ative procedure starts at an arbitrary point n0 and proceeds
along a certain direction, say k1, to assure an increase (maximi-
zation) of the objective, power p, until its extremum in the
direction k1 is reached. To find this ‘‘directional extremum” a
single variable search for a peak is applied [30]. A single vari-
able, l, measures distances covered in various directions. In the
first search, the magnitude of the step is selected so as to extre-
mize power pL along the direction k1. Assuming that the magni-
tude of the step extremizing pL is equal to l1, the corresponding
decision is n1 = n0 + k1 l1. The so-obtained n1 is simultaneously
the starting value of n for the second step, etc. Each numerical
method (steepest ascent, gradient, Gauss-Seidel, Powell, etc.)
generates directions kq at the step q in a different way, yet each
one converges to the extremum of power. For comparison of var-
ious search methods see [31].

Only in the case of a simple isomerization reaction A1 + A2 = 0 an
explicit analytical formula expressing n in terms of f does exist. In
this special case power p may be described in terms of f by the fol-
lowing equation

p ¼ fn ¼ f
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� � ð91Þ

de Vos [27]. Function n(f) contained in Eq. (91) is the inverse of
function f (n) in Eq. (78). The graphical illustration of power p in
terms of f is consistent with Fig. 5.

The line of produced power represented by Eq. (91), has two
zero points. The first is the ‘‘short circuit point” (point of vanish-
ing efficiency), and, the second is the ‘‘open circuit point” or Car-
not point at which the feeding of the system by the fuel is
infinitely slow. The function n(f) contained in Eq. (91) describes
for f = 0 a feed rate of the active reagent at the short circuit
point.

Power expression (91) exhibits a maximum power attained for
a certain efficiency fmp that may be obtained either graphically or
by one of the numerical search methods discussed above. One
may also solve numerically an equation

dp
df
¼ 0 ð92Þ

by Newton–Raphson method. The numerical solution generates a
function of the optimal efficiency
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fmp ¼ f ðf0; T; x1; x2; g1; g2Þ: ð93Þ

This is the chemical counterpart of the Chambadal–Novikov–
Curzon–Ahlborn efficiency (CNCA efficiency). Substituting Eq.
(93) into the n expression of Eq. (91), leads to the corresponding
flux n at the maximum power point.

nmp ¼ f ðf0; T; x1; x2; g1; g2Þ: ð94Þ
10. Generalized entropy production

For the intensity of the entropy generation in multireaction sys-
tems a vector generalization of the previous findings established in
a single-reaction system is valid. Entropy is not produced only at
the Carnot point, where the components of the efficiency vector
are fjC. Therefore, modulo to the temperature factor T�1, the gener-
alized entropy production is the scalar product of two R dimen-
sional vectors, the vector of efficiency deviation fC � f and the
vector of chemical flux, n

rs ¼
ðfC � fÞ:n

T
ð49Þ

Refs. [2,3]. Since both f and n are linked, rs can be presented in
terms of each vector f or n. When the control is the chemical flux
of the fuel, n, then, from Eqs. (86) and (89)

fc � f0 ¼ �RT ln
Yi

s¼1

ðxs1 Þ
ms
Ym

p¼iþ1

ðxp2
Þmp

 !
ð95Þ

and

rs=R ¼ � n: ln
Yi

s¼1

ðxs1 Þ
ms
Ym

p¼iþ1

ðxp2
Þmp �

Yi

s¼1

ðxs1 þ ðg�1
1 mnÞsÞ

�ms

(

�
Ym

p¼iþ1

ðxp2
þ ðg�1

2 mnÞpÞ
�mp

)
: ð96Þ

In the special case of reaction A1 + A2 = 0, for which the stoichi-
ometric coefficients m1 = �1 and m2 = 1, Eq. (96) yields.

rs ¼ Rn ln
x11

x22

� � x22 þ ng�1
22

x11 � ng�1
11

 ! !
ð97Þ

which corrects the omission of multiplier n in our previous work
(Sieniutycz [2,3]).

In the ‘‘short circuit” point of the system, there is no power pro-
duction for any value of vector f0, despite the potential for chemical
reactions. Only entropy is produced. This case may be regarded as
‘‘classical”, occurring in a purely dissipative system, where lossy ele-
ments predominate so significantly that the chemical reaction does
not produces any power, despite of its non-vanishing rate and an
existing finite potential of f0 (but not f) for the power production.

From Eqs. (49) and (95) we find

ðrsÞf¼0 ¼
fC:n

T
¼ n:

f0

T
� R ln

Yi

s¼1

ðxs1 Þ
ms
Ym

p¼iþ1

ðxp2
Þmp

 !
: ð98Þ

This result agrees with a classical formula where the entropy
production per unit volume equals the product of reaction rate
and chemical affinity in the entropy representation. Yet, this clas-
sical result does not hold when the system produces power, i.e., it
is an ‘‘active system”. For power-producing systems generalized
result, Eq. (96), should be applied.

If both f0 = 0 and f = 0 the ‘‘short circuit” state is the one with-
out chemical reactions. This, does not mean, however, that the flux
n in Eq. (49) and (95) vanishes because the mass diffusion can still
proceed making the system a diffusion engine in which i reactants
in reservoir 1 are chemically identical with i products in reservoir 2
(i.e., s = p, A1 = Ai+1, Ai = Am and �ms = mp = m = 1 for each component
i), yet the concentrations in 1 and 2 are different. The entropy is
then produced only by the multicomponent mass transport

ðrsÞf¼0;fC¼0 ¼
fC :n0

T
¼
Xi

k¼1

fCk

T
xk1
� xk2

ðgk1
Þ�1 þ ðgk2

Þ�1

 !

¼ R
Xi

k¼1

lnðxk1
=xk2
Þ xk1

� xk2

ðgk1
Þ�1 þ ðgk2

Þ�1

 !
: ð99Þ

In the case of binary mixture this formula can be written as [2,3]

ðrsÞf¼0;fC¼0 ¼ T�1 ðl1 � l2Þ:ðx1 � x2Þ
ðg1Þ

�1 þ ðg2Þ
�1 : ð100Þ

The discussed equation describes the situation in which the
reactor does not exist, the fuel stream flows by two sequentially
connected conductors, and the constant molar flux of the binary
mixture, n, is determined by the specification of the overall con-
ductance g.

11. Extension to systems with internal dissipation

Here, for simplicity, we restrict ourselves to a single-reaction
system, yet with an arbitrary chemical reaction. Power optimiza-
tion in practical generators calls for the relaxation of the assump-
tion about the reversibility of chemical reaction and taking into
account the (internal) entropy production associated with this pro-
cess. Moreover chemical efficiency f defined as power yield per one
mole of the invariant molar flux n is insufficient to characterize a
non-isothermal generator in which an extra component of power
appears associated with the temperature difference between the
reservoirs. Therefore, we shall also comment a possible extension
of the theory to the more general case of the dissipative chemical
reaction in a non-isothermal system.

Consequently, internal entropy production rint
s and a set of

positive internal coefficients for products, wp, each satisfying
the inequality wp > 1, are introduced to describe the internal
imperfections within the chemical chamber. With these quanti-
ties one may set suitable balance equations of the internal part
of engine. In terms of total energy flux (20) power yield, result-
ing from the energy balance the internal (reacting) chamber, is
given by Eq. (21)

p ¼ Q 10 � Q20 þ l110
n110
þ . . .li10

ni10 . . .þ lm10
nm10
� l120

n120

� . . .li20
ni20 . . .� lm20

nm20
; ð210Þ

where we have introduced ‘‘total heat flux” defined by an Eq. (20).
In the case of complete conversion this equation simplifies to an
expression describing the apparent non-isothermal power yield

p ¼ Q 10 � Q20 þ l110
n110
þ . . .li10

ni10 � . . .liþ120
niþ120

. . .� lm20
nm20

:

ð101Þ

In the special case of an isomerisation equation A1 + A2 = 0 this
yields

p ¼ Q 10 � Q20 þ l10n10 � l20n20 : ð102Þ

The virtue of using total heat Q10 is the additive contribution of
the total heat flux to power yield in the power formula containing
chemical efficiency in the form of the driving force or affinity l10

� l20. Since the identification of the chemical driving force or affin-
ity with the chemical efficiency is possible only in the thermody-
namically reversible reaction, we shall show here how the
internal entropy production and incomplete conversion affect the
form of the efficiency expressions.



Fig. 6. Change of power output P in the irreversible chemical engine in terms of
chemical efficiency f. Lines 1, 2 and 3 pertain to imperfection factor w = 1, 1.1, and
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The entropy and mass balances of the internal or chemical part
of the engine are

Q 20

T20
� Q 10

T10
¼ rint

s ; ð103Þ

np20 � np10 ¼ rint
p : ð104Þ

This set contains the positive source rint
p characterizing incom-

plete conversion of product p between sections 10 and 20 of the
chemical chamber. From these equations we find, respectively, in
terms of internal productions of entropy and product p

Q 20

Q 10
¼ T20

T10
þ T20rint

s

Q 10
¼ 1þ T10rint

s

Q 10

� �
T20

T10
� U

T20

T10
ð105Þ

and

np20

np10
¼ 1þ

rint
p

np10
� 1þ 1

Wp � 1
; ð106Þ

where p refers to arbitrary product. In the power equations written
down below internal imperfection functions U and wp are defined
in terms of internal sources and system’s operational parameters
in accordance with the definitions

U � 1þ T 01rint
s

Q 10
ð107Þ

Wp � 1þ
np10

rint
p
¼

np20

np20 � np10
: ð108Þ

For an engine, U > 1 and wp > 1.
Let us now take into account the balance of mole numbers in

the general case of a system with arbitrary inlet and outlet molar
flows

ðn110
� n120

Þj
m1j

¼
ðn210

� n220
Þj

m2j
. . . ¼

ðni10 � ni20 Þj
mij

. . . ¼
ðnk10

� nk20
Þj

mkj

¼
ðnl01
� nl20

Þj
mlj

¼
ðnm10

� nm20
Þj

mmj
� �nj: ð23Þ

With these general formulas one can propose the multi-component
extension of the previous approach postulated in an earlier work
[2]. The approach in fact assumes that the basic equality of the com-
plete conversion model

n120
¼ n220

. . . ¼ ni20 ¼ 0 ð240Þ

is still valid (i.e., substrates 1,2, . . . , i do not appear in cross-section
20), but that

niþ110
¼ niþ210

. . . ¼ nm10
–0 ð109Þ

which means that there must be some input fluxes of prod-
ucts = i + 1, i + 2, . . . ,m at the inlet cross-section 10 in order to
achieve required final products. Then instead of ‘‘perfect equality”
(26) applied for R = 1 we have

�
n110

m1
. . . ¼ �

ni10

mi
. . . ¼

niþ120 �niþ110

miþ1
¼

nm20
� nm10

mm
� n: ð110Þ

This can be written in the form

�
n110

m1
. . . ¼ �

ni10

mi
. . . ¼

niþ120

miþ1niþ120
=ðniþ120 �niþ110

Þ

¼ . . . . . .
nm20

mmnm20
=ðnm20

� nm10
Þ � n: ð111Þ

An equivalent form of this equation contains factors wp defined
above as the values of ratios wp = np2/Dnp for products (i + 1, . . . ,m),
each satisfying the property wp > 1

�
n110

m1
. . . ¼ �

ni10

mi
¼

niþ120

miþ1W
. . . ¼ . . .

nm20

mmW
� n: ð112Þ
The non-isothermal power yield (101) is now, in fact, an appar-
ent formula. After using Eq. (112) the power assumes the form

p ¼ Q 10 ð1�UT20=T10 Þ � fl110
m1 þ . . .li10

mi þWliþ120
miþ1

þ . . . Wlm�120
mm�120

þWlm20
mm20
gn: ð113Þ

A formal interpretation of this power formula is based on effec-
tive increase of chemical potentials of products and outlet Gibbs
flux, which causes the reduction of chemical efficiency. Consider-
ing a physical viewpoint, however, the explanation of the efficiency
decrease uses the observation that there are now products (species
of lower lk) in the inlet stream to the system, which decrease the
inlet Gibbs fluxes of the reagents and hence reduce the apparent
efficiency. Whichever of these two interpretations is accepted a de-
crease of power production is predicted.

The approach presented here is similar to that known in the
theory of imperfect heat machines which operates with the factor
of internal irreversibilities U (satisfying the inequality U > 1 and
acting multiplicatively on the temperature of circulating fluid con-
tacting with the second reservoir, T20. The effective temperature of
this fluid Teff

20 equals then UT20, as shown in the thermal efficiency
formula (105). Of course, this effect causes the decrease of the ther-
mal efficiency. In the chemical case the role similar to U is played
by coefficient w (or the family of such coefficients, wp, when each
member pertains to a different product). The effective chemical po-
tential of product p becomes wlp at 20; since each wp > 1 the effec-
tive chemical potentials of products that reside in the chemical
efficiency are higher than actual ones. This effect decreases chem-
ical efficiencies (driving forces and affinities).

Power formula, Eq. (113), generalizes the idealized power of Eq.
(101). Vector nature of efficiency manifests itself in non-isothermal
chemical systems. The first or thermal component of the power
yield describes power generated by the total heat flux with the de-
creased (non-Carnot) thermal efficiency g = 1 �UT20/T10. Whereas
the second or chemical component describes the power yield
caused by the chemical reaction. The chemical power is generated
with the lowered (non-ideal) chemical efficiency

fW � �fl110
m1 þ . . .li10

mi þWliþ120
miþ1 þ . . . Wlm�120

mm�120

þWlm20
mm20
g: ð114Þ

The chemical term in the power formula predominates in sys-
tems that work closely to isothermal conditions. Effectively, in
the engine mode where U > 1 and w > 1, an imperfect chemical
system (with internal irreversibilities), behalves as it would work
with the higher temperature of circulating fluid in its lower branch
(UT20 instead T20) and with a decreased affinity of an effective value
1.2, respectively.
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(114). Of course, power production is decreased by these imperfec-
tions. An example of the engine power reduction caused by the
irreversibility factor w > 1 is shown in Fig. 6; the results are consis-
tent with those of Lin et al. [4].

12. Concluding remarks

In their recent paper Bergman, Faghri, and Viskanta [35] attrib-
uted the frontiers in transport phenomena research and education
to: energy systems, biological systems, security, information tech-
nology, and nanotechnology. This fact stresses, in particular, the
role of chemical power systems in the contemporary researches.
In the present paper, an approach has been applied that imple-
ments balances of molar fluxes and reaction invariants to complex
chemical systems with the power production. This approach pre-
dicts reduction of chemical efficiencies caused by finite rates and
leads to the evaluation of power limits in complex multicompo-
nent and multireaction systems driven by the mass transport of
reactants. Conditions for the maximum production of power have
been given for complex chemical systems. The reduction of power
yield caused by the system’s imperfections is different than that
evaluated from the classical expression for the entropy production.
In fact, we have shown that the classical result for the entropy pro-
duction, Eq. (98), does not hold when the system produces power,
i.e., it is an ‘‘active system”. For power-producing systems a novel
generalized result, Eq. (96), has been obtained. The solution for
limits of power produced or consumed in a irreversible chemical
system is a fundamental result whose scientific rank is comparable
to the solution for the work limit in static reversible system. While
the latter solution (in terms of Gibbs function) is classical and
quasistatic, the former one involves rate or irreversible effects.
For given transfer conductances (products of transfer coefficients
and area) the irreversible solution can be applied to problem of
arbitrary complex chemistry.

Special results have been presented for non-isothermal power
systems, stoichiometric mixtures, isomerization reactions and
internal dissipation within the chemical reactor. In this last case
we shall abandoned ‘‘endoreversibility”, i.e., presented a proposal
for the extension of the basic theory to the more general case when
a dissipative chemical reaction undergoes within the non-isother-
mal chemical system.
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Methods of Optimization, Państwowe Wydawnictwa Naukowe, Warszawa,
1977.

[32] S. Sieniutycz, J. Je _zowski, Energy Optimization in Process Systems, Elsevier,
Dordrecht, 2009.

[33] T. deDonder, L’Affinite, Gauthier-Villars, Paris, 1928.
[34] S. Sieniutycz, Thermodynamics of simultaneous drying and power production,

Dry. Technol. 27 (2009) 1–14.
[35] T.L. Bergman, A. Faghri, R. Viskanta, Frontiers in transport phenomena research

and education: energy systems, biological systems, security, information
technology and nanotechnology, Int. J. Heat Mass Transfer 51 (2008) 4599–
4613.


	Complex chemical systems with power production driven by heat and mass transfer
	Introduction
	Power yield from a general set of chemical reactions
	Power yield from chemical reactions with complete conversion
	Entropy production in a system with many components and chemical reactions
	Significance of invariant molar flux
	Role of mass exchange equations
	Characteristics of the chemical engine
	Generalization for multiple reactions
	Propelling the engine by coupled mass transfer
	Generalized entropy production
	Extension to systems with internal dissipation
	Concluding remarks
	Acknowledgements
	References


